Approximate Bounded Knowledge Extraction using Type-I Fuzzy Logic
نویسندگان
چکیده
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity. Keywords—Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
منابع مشابه
ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملOptimal intelligent control for glucose regulation
This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...
متن کاملGreater Knowledge Extraction Based on Fuzzy Logic And GKPFCM Clustering Algorithm
This work proposes how to generate a set of fuzzy rules from a data set using a clustering algorithm, the GKPFCM. If we recommend a number of clusters, the GKPFCM identifies the location and the approximate shape of each cluster. These ones describe the relations among the variables of the data set, and they can be expressed as conditional rules such as "If/Then". The GKPFCM provides membership...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کامل