Approximate Bounded Knowledge Extraction using Type-I Fuzzy Logic

نویسندگان

  • Syed Muhammad Aqil Burney
  • Tahseen Ahmed Jilani
  • Cemal Ardil
چکیده

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity. Keywords—Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

Optimal intelligent control for glucose regulation

This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...

متن کامل

Greater Knowledge Extraction Based on Fuzzy Logic And GKPFCM Clustering Algorithm

This work proposes how to generate a set of fuzzy rules from a data set using a clustering algorithm, the GKPFCM. If we recommend a number of clusters, the GKPFCM identifies the location and the approximate shape of each cluster. These ones describe the relations among the variables of the data set, and they can be expressed as conditional rules such as "If/Then". The GKPFCM provides membership...

متن کامل

Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions

This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...

متن کامل

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005